

1. Dados do Cliente

Razão Social: Blocom Artefatos de Concreto Ltda

Endereço: Fazenda Boa Esperança, S/N – Bairro: Centro – Rodeio/MG – CEP: 36510-000

A/C: Wellington Luiz Fernandes

Código da Proposta/Pedido: 5207/3142

2. Objetivo

Análise de desempenho térmico por simulação computacional da edificação apresentada no item 4.

3. Responsáveis

Relatório de Ensaio autorizado por: Dra. Arq. e Urb. Maria Fernanda de Oliveira

Responsável pelo Ensaio: Dr. Eng. Civil Roberto Christ

Analista de Projetos: Enga Civil Maira Janaina Ott

4. Amostras para análise

A amostragem é responsabilidade do Cliente.

Data de Recebimento: não aplicável Número(s) da(s) Amostra(s): 6225

Período de Realização do Ensaio: 23/07/2020 a 18/08/2020

Local da realização das atividades do Ensaio: nas instalações permanentes do itt Performance (Unisinos).

A amostra analisada consiste em uma edificação habitacional horizontal unifamiliar, inserida na cidade de São Leopoldo/RS, a qual está apresentada na Figura 1 e no Anexo A. A Tabela 1 apresenta a composição construtiva da edificação e as Tabelas 2 e 3 apresentam as propriedades térmicas dos materiais construtivos e vidros empregados. O pé direito da edificação é de 2,70 m.

Tabela 1 - Composição construtiva da edificação

Elemento	Composição construtiva
Cobertura	Vigota de concreto de espessura 10 cm + Lajota de EPS com densidade 15 kg/m³ e 7 cm de
Cobcitara	espessura + Capa de concreto / contrapiso de 7 cm de espessura.
Paredes externas e externas	Paredes compostas por blocos de vedação <i>Blocom</i> e assentamento argamassado de traço 1:5 (cimento:areia) e amarração. Bloco composto em camadas: <u>Camada 1</u> : Microconcreto armado de traço 1:4 (cimento:areia industrial), tela 3,4 mm, malha 20/20 e espessura de 1,5 cm + <u>Camada 2</u> : EPS de densidade 15kg/m³ e espessura de 12 cm + <u>Camada 3</u> : Microconcreto armado de traço 1:4 (cimento:areia industrial), tela 3,4 mm, malha 20/20 e espessura de 1,5 cm.
Piso/Fundação	Radier de espessura 10 cm.
Entrepiso/Forro	Forro de lajota de EPS e capa de concreto.
Janelas	Janelas com perfil em alumínio e vidro liso temperado de espessura 8 mm.
Portas	Marco em madeira maciça e porta em madeira convencional semi-oca de espessura 40 mm.
Cores	Fachada e Cobertura na cor "concreto".

Fonte: informados pelo cliente

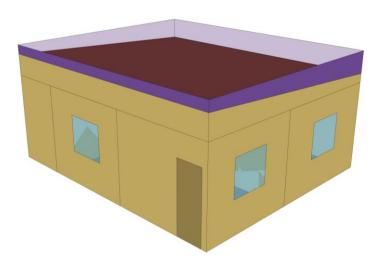


Figura 1 - Perspectiva da edificação analisada

Tabela 2 – Propriedades termo físicas dos materiais empregados

Material construtivo	Propriedades térmicas					
Material Constitutivo	λ [W/m.K]	ρ [kg/m³]	c [kJ/kg.K]			
EPS	0,04	15	1420			
Microconcreto	1,75	2500	1000			
Telha metálica	230	2700	880			

Obs.: condutividade térmica (λ), densidade de massa aparente (ρ), calor específico (c). Fonte: adaptado de NBR 15220-2.

Tabela 3 - Propriedade dos vidros

Tinologio	Propriedades térmicas								
Tipologia	Ts	Rs	Rs	Tv	Rv	Rv	Tir	з	K [W/m.K]
Vidro claro	0,771	0,071	0,071	0,884	0,081	0,081	0	0,84	0,9

Fonte: Optics 5.2a

5. Instrumentação

A Tabela 4 apresenta os softwares utilizados no ensaio.

Tabela 4 – Descrição dos softwares empregados na simulação computacional

Descrição	Fabricante	Modelo
Energy Plus®	U.S. Department of Energy	8.1.0
OpenStudio®	Alliance for Sustainable Energy	1.0.11
SketchUp®	Google	2008

6. Métodos

O ensaio térmico foi desenvolvido para todas as oito zonas bioclimáticas brasileiras (ZB), ZB1 a ZB8, conforme o zoneamento definido pela ABNT NBR 15220-3:2005 (Figura 2). Para tanto, as simulações térmicas foram realizadas para as cidades representativas das zonas bioclimáticas: Curitiba/PR (ZB1), São Lourenço/MG (ZB2), São Paulo/SP (ZB3), Brasília/DF (ZB4), Vitória da Conquista/BA (ZB5), Campo Grande/MS (ZB6), Cuiabá/MT (ZB7) e Manaus/AM

(ZB8), verificando a conformidade da edificação com os critérios da norma. Os arquivos climáticos utilizados (TMY) foram elaborados a partir de dados horários, registrados em estação climatológicas do INMET entre os anos de 2004 e 2018.

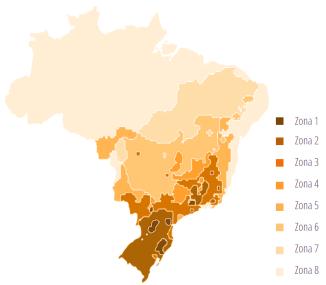


Figura 2 - Zonas bioclimáticas no Brasil (ABNT NBR 15220-3:2005)

O ensaio térmico foi orientado pelo método de simulação da norma de desempenho ABNT NBR 15575-1:2013. A avaliação é realizada considerando um dia típico de projeto de inverno e de verão e os valores da temperatura interna resultante das simulações são comparados com a temperatura externa (retirada dos arquivos climáticos utilizados). A diferença entre eles é comparada com os requisitos para o verão e para o inverno (Tabela 5). Os dias típicos de projeto para as cidades não abordadas pela ABNT NBR 15575-1:2013 foram determinados conforme a metodologia desenvolvida por Siqueira et al. (2005)¹.

Tabela 5 – Critério de avaliação de desempenho térmico

Nível de	Zonas bioclimáticas 1 a 7	Zona bioclimática 8	Zonas bioclimáticas 1 a 5		
desempenho	Verão	Verão	Inverno		
M	$T_{i,Max} \le T_{e,Max}$	$T_{i,Max} \le T_{e,Max}$	$T_{i,Min} \ge (T_{e,Min} + 3^{\circ}C)$		
I	$T_{i,Max} \le (T_{e,Max} - 2^{\circ}C)$	$T_{i,Max} \le (T_{e,Max} - 1^{\circ}C)$	$T_{i,Min} \ge (T_{e,Min} + 5^{\circ}C)$		
S	$T_{i,Max} \le (T_{e,Max} - 4^{\circ}C)$	$T_{i,Max} \le (T_{e,Max} - 2^{\circ}C)$	$T_{i,Min} \ge (T_{e,Min} + 7^{\circ}C)$		

T_{i,Max} é o valor máximo diário da temperatura do ar no interior da edificação, em graus centígrados;

Fonte: adaptado de ABNT NBR 15575:2013

T_{e,Max} é o valor máximo diário da temperatura do ar exterior à edificação, em graus centígrados;

Te, Min é o valor mínimo diário da temperatura do ar no interior da edificação, em graus centígrados;

 $T_{i,Min}$ é o valor mínimo diário da temperatura do ar exterior à edificação, em graus centígrados;

Zonas bioclimáticas de acordo com a norma NBR 15220 - Parte 3.

¹ SIQUEIRA, T. et al. **Dados climáticos para avaliação de desempenho térmico de edificações**. Revista Escola de Minas, v. 58, n. 2, p. 133–138, 2005.

Para a simulação computacional, selecionou-se o software EnergyPlus (versão 8.1) e para a modelagem da edificação foi utilizado o plug-in OpenStudio para o Google SketchUp 8. O algoritmo de solução utilizado foi o CTF (*Conduction Transfer Function*), o qual considera apenas a troca de calor sensível, desconsiderando o armazenamento e difusão de umidade nos sistemas construtivos.

Para que a edificação apresentasse a condição mais crítica termicamente, os ambientes escolhidos para análise possuem a orientação solar mais desfavorável. A edificação foi simulada, inicialmente, na condição padrão, sendo esta com taxa de renovação de ar dos ambientes internos, incluindo coberturas, de 1 ren/h. A edificação foi novamente simulada nas condições: de ventilação, com taxa de renovação de ar de 5 ren/h; de sombreamento, com sombreamento de 50% do vão das esquadrias de salas e dormitórios, e de ventilação e sombreamento simultâneos. A classificação obtida nestas condições adicionais, porém, só deve ser adotada no caso de não atendimento da edificação frente à NBR 15575:2013 na condição padrão, conforme indicado pela referida norma.

As simulações foram realizadas com absortâncias de 0,3, 0,5 e 0,7 nas paredes externas e 0,2 (telha metálica) na cobertura, conforme indicado pelo cliente.

7. Resultados

Com a análise dos dados obtidos na análise térmica e com a adoção dos limites das zonas bioclimáticas (Tabela 5), apresentam-se na Tabela 6, o nível de desempenho e as temperaturas externas e internas máximas e mínimas obtidas através da simulação para condição padrão.

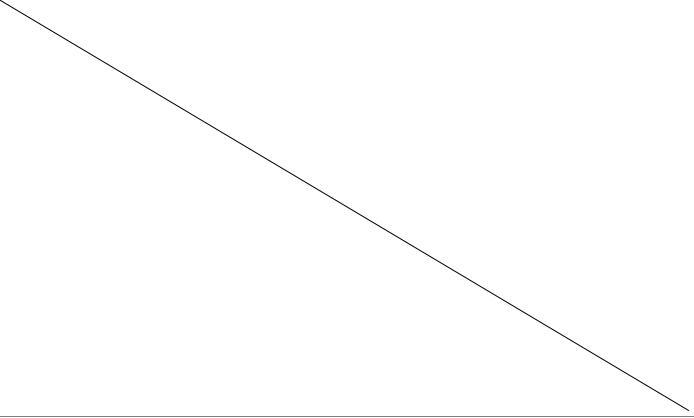


Tabela 6 - Resultados da avaliação de desempenho térmico - Condição Padrão

70	Allerand		Temp. Ambientes			5	(T T)	Nível de
ZB	Absort.	Situação	externa	Sala	Dorm. 1	Dorm. 2	(Tint-Text)crít	desempenho
				Condiçã	o: padrão			
1	0,3	Verão	31,4	27,2	27,0	26,9	-4,2	S
	0,3	Inverno	0,7	3,6	3,6	3,6	2,9	N/A
	0,5	Verão	31,4	27,3	27,1	26,9	-4,1	S
	0,5	Inverno	0,7	3,6	3,6	3,6	2,9	N/A
	0.7	Verão	31,4	27,3	27,1	26,9	-4,1	S
	0,7	Inverno	0,7	3,6	3,6	3,6	2,9	N/A
	0,3	Verão	31,8	27,8	27,6	27,5	-4,0	S
2	0,3	Inverno	2,6	5,7	5,7	5,7	3,1	M
2	0,5	Verão	31,8	27,9	27,7	27,6	-3,9	I
	0,5	Inverno	2,6	5,7	5,7	5,7	3,1	M
	0,3	Verão	31,9	27,5	27,3	27,3	-4,4	S
	0,3	Inverno	6,2	8,2	8,2	8,2	2,0	N/A
3	0,5	Verão	31,9	27,6	27,4	27,4	-4,3	S
3	0,5	Inverno	6,2	8,2	8,2	8,2	2,0	N/A
	0,7	Verão	31,9	27,6	27,4	27,5	-4,3	S
	0,7	Inverno	6,2	8,2	8,2	8,2	2,0	N/A
4	0,3	Verão	31,2	27,0	26,8	26,7	-4,2	S
		Inverno	10,0	13,0	13,0	13,0	3,0	M
	0,5	Verão	31,2	27,1	26,9	26,7	-4,1	S
4		Inverno	10,0	13,0	13,0	13,0	3,0	M
		Verão	31,2	27,2	26,9	26,8	-4,0	S
		Inverno	10,0	13,0	13,0	13,0	3,0	M
	0,3	Verão	31,7	27,0	26,8	26,6	-4,7	S
	0,3	Inverno	10,7	14,2	14,2	14,1	3,4	M
E	0.5	Verão	31,7	27,1	26,9	26,7	-4,6	S
5	0,5	Inverno	10,7	14,2	14,2	14,2	3,5	M
	0.7	Verão	31,7	27,2	27,0	26,7	-4,5	S
	0,7	Inverno	10,7	14,2	14,2	14,2	3,5	M
	0,3	Verão	33,6	29,8	29,7	29,7	-3,8	I
6	0,5	Verão	33,6	29,9	29,7	29,8	-3,7	I
	0,7	Verão	33,6	29,9	29,8	29,8	-3,7	I
	0,3	Verão	37,8	33,5	33,3	33,2	-4,3	S
7	0,5	Verão	37,8	33,5	33,4	33,3	-4,3	S
	0,7	Verão	37,8	33,6	33,4	33,3	-4,2	S
	0,3	Verão	34,9	31,9	31,7	31,5	-3,0	S
8	0,5	Verão	34,9	31,9	31,8	31,6	-3,0	S
	0,7	Verão	34,9	32,0	31,8	31,6	-2,9	S

Na Tabela 7, apresentam-se os resultados obtidos na simulação da unidade habitacional projeto, na situação de verão, para condição com ventilação.

Tabela 7 - Resultados da avaliação de desempenho térmico - Condição com ventilação

ZB	Absort	Situação	Temp.		Ambiente	s	(Tint-	Nível de			
ZB	Absort.	Situação	externa	Sala	Dorm. 1	Dorm. 2	Text)crít	desempenho			
Condição: com ventilação											
1	0,3	Verão		28,2	28,0	27,9	-3,2	I			
	0,5		31,4	28,2	28,1	27,9	-3,2	I			
	0,7			28,3	28,1	28,0	-3,1	I			
	0,3			28,8	28,6	28,5	-3,0	I			
2	0,5	Verão	31,8	28,9	28,7	28,5	-2,9	I			
	0,7			28,9	28,7	28,6	-2,9	I			
	0,3			28,6	28,4	28,4	-3,3	I			
3	0,5	Verão	31,9	28,6	28,4	28,5	-3,3	I			
	0,7			28,7	28,5	28,5	-3,2	I			
	0,3	Verão	31,2	28,2	28,0	27,9	-3,0	I			
4	0,5			28,3	28,1	27,9	-2,9	I			
	0,7			28,4	28,1	28,0	-2,8	I			
	0,3	Verão	31,7	28,3	28,1	27,9	-3,4	I			
5	0,5			28,4	28,2	28,0	-3,3	I			
	0,7			28,4	28,3	28,0	-3,3	I			
	0,3	Verão		30,4	30,4	30,4	-3,2	I			
6	0,5		33,6	30,5	30,4	30,4	-3,1	I			
	0,7			30,5	30,4	30,5	-3,1	I			
	0,3			34,4	34,3	34,2	-3,4	I			
7	0,5	Verão	37,8	34,4	34,3	34,2	-3,4	I			
	0,7			34,5	34,4	34,3	-3,3	I			
	0,3			32,5	32,4	32,1	-2,4	S			
8	0,5	Verão	34,9	32,5	32,4	32,2	-2,4	S			
	0,7			32,6	32,4	32,2	-2,3	S			

Na Tabela 8, apresentam-se os resultados obtidos na simulação da unidade habitacional projeto, na situação de verão, para condição com sombreamento.

Tabela 8 – Resultados da avaliação de desempenho térmico – Condição com sombreamento

ZB	Absort.	Situação	Temp.	_	Ambiente	s	(Tint- Text)crít	Nível de				
ZB	Absort.	Situação	externa	Sala	Dorm. 1	Dorm. 2		desempenho				
	Condição: com sombreamento											
1	0,3			27,2	26,7	26,7	-4,2	S				
	0,5	Verão	31,4	27,2	26,8	26,7	-4,2	S				
	0,7			27,3	26,8	26,7	-4,1	S				
	0,3			27,8	27,3	27,3	-4,0	S				
2	0,5	Verão	31,8	27,9	27,4	27,3	-3,9	I				
	0,7			27,9	27,4	27,4	-3,9	I				
	0,3			27,5	27,1	27,1	-4,4	S				
3	0,5	Verão	31,9	27,5	27,1	27,2	-4,4	S				
	0,7		-	27,6	27,2	27,2	-4,3	S				
	0,3	Verão		27,0	26,6	26,6	-4,2	S				
4	0,5		31,2	27,1	26,7	26,6	-4,1	S				
	0,7			27,2	26,7	26,6	-4,0	S				
	0,3	Verão		27,0	26,3	26,2	-4,7	S				
5	0,5		31,7	27,1	26,4	26,3	-4,6	S				
	0,7			27,2	26,4	26,3	-4,5	S				
	0,3			29,8	29,5	29,5	-3,8	I				
6	0,5	Verão	33,6	29,9	29,5	29,5	-3,7	I				
	0,7			29,9	29,5	29,6	-3,7	I				
	0,3			33,5	33,1	33,1	-4,3	S				
7	0,5	Verão	37,8	33,5	33,1	33,1	-4,3	S				
	0,7			33,6	33,2	33,2	-4,2	S				
	0,3			31,9	31,4	31,4	-3,0	S				
8	0,5	Verão	34,9	31,9	31,5	31,4	-3,0	S				
	0,7			32,0	31,5	31,4	-2,9	S				

Por fim, a Tabela 9, apresenta os resultados obtidos na simulação da unidade habitacional projeto, na situação de verão, para condição com ventilação e sombreamento.

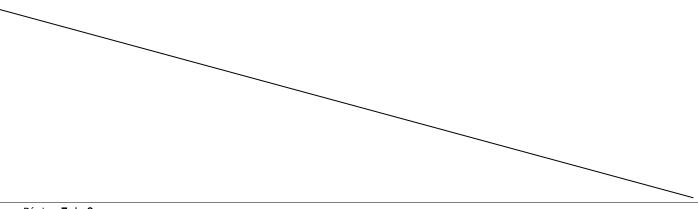


Tabela 9 - Resultados da avaliação de desempenho térmico - Condição com ventilação e sombreamento

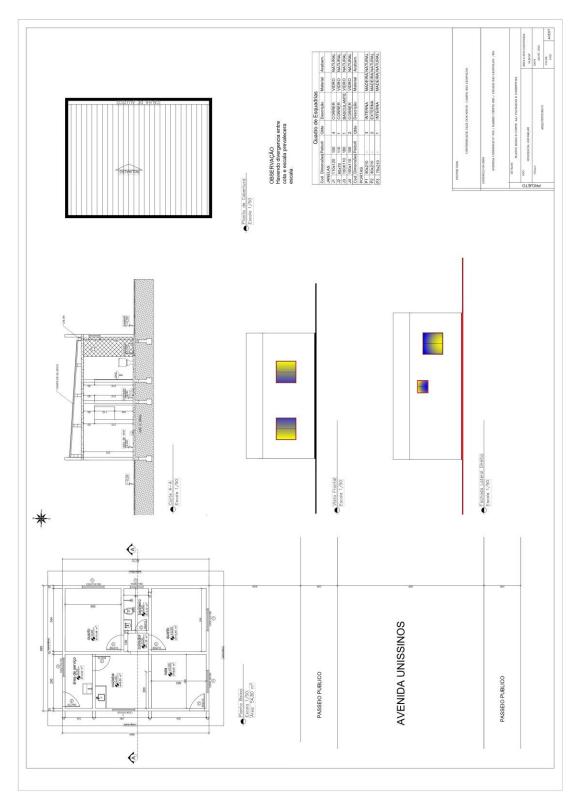
70	Alsonut	0:4	Temp.		Ambientes	S	(T. T.) (Nível de			
ZB	Absort.	Situação	externa	Sala	Dorm. 1	Dorm. 2	(Tint-Text)crít	desempenho			
Condição: com ventilação e sombreamento											
	0,3			28,2	27,8	27,7	-3,2	I			
1	0,5	Verão	31,4	28,2	27,8	27,8	-3,2	I			
	0,7			28,3	27,9	27,8	-3,1	I			
	0,3			28,8	28,4	28,3	-3,0	I			
2	0,5	Verão	31,8	28,9	28,4	28,4	-2,9	I			
	0,7			28,9	28,5	28,4	-2,9	I			
	0,3			28,6	28,2	28,2	-3,3	I			
3	0,5	Verão	31,9	28,6	28,3	28,3	-3,3	I			
	0,7			28,7	28,3	28,3	-3,2	I			
	0,3			28,2	27,8	27,8	-3,0	I			
4	0,5	Verão	31,2	28,3	27,9	27,8	-2,9	I			
	0,7			28,4	27,9	27,8	-2,8	I			
	0,3			28,3	27,7	27,6	-3,4	I			
5	0,5	Verão	31,7	28,4	27,8	27,7	-3,3	I			
	0,7			28,4	27,8	27,7	-3,3	I			
	0,3			30,4	30,2	30,2	-3,2	I			
6	0,5	Verão	33,6	30,5	30,2	30,2	-3,1	I			
	0,7			30,5	30,2	30,2	-3,1	I			
	0,3			34,4	34,1	34,1	-3,4	I			
7	0,5	Verão	37,8	34,4	34,1	34,1	-3,4	I			
	0,7			34,5	34,2	34,1	-3,3	I			
	0,3			32,5	32,1	32,0	-2,4	S			
8	0,5	Verão	34,9	32,5	32,1	32,0	-2,4	S			
	0,7			32,6	32,2	32,1	-2,3	S			

8. Observações

- OS RESULTADOS APRESENTADOS NESTE RELATÓRIO REFEREM-SE SOMENTE AOS ITENS ENSAIADOS.
- CONTENDO 09 PÁGINAS, O PRESENTE RELATÓRIO TÉCNICO FOI ELABORADO PELA EQUIPE TÉCNICA DO itt
 Performance/UNISINOS E OS RESULTADOS AQUI APRESENTADOS NÃO PODEM SER UTILIZADOS INDISCRIMINADAMENTE,
 SENDO VÁLIDOS SOMENTE NO ÂMBITO DESTE DOCUMENTO, SENDO VEDADA SUA REPRODUÇÃO PARCIAL. A
 GENERALIZAÇÃO DOS RESULTADOS PARA QUALQUER LOTE/UNIVERSO SERÁ DE RESPONSABILIDADE DO CLIENTE.
- O LABORATÓRIO NÃO FOI RESPONSÁVEL PELA AMOSTRAGEM DO(S) ITEM(NS) ENSAIADO(S), E OS RESULTADOS SE APLICAM A AMOSTRA CONFORME RECEBIDA.

Emitido em 25 de setembro de 2020.

Dra. Arq. e Urb. Maria Fernanda de Oliveira CAU RS A160003-6


Dr. Eng. Civil Roberto Christ CREA RS nº 182890

UNISINOS

F96-05 - RELATÓRIO DE ENSAIO Relatório Nº 3737/2020

Anexo A - Planta Baixa da Edificação

Final do Relatório - Recomendam-se cuidados para publicação destes resultados e, quando necessário esta publicação, o relatório deve ser reproduzido na íntegra. Reprodução em partes requer aprovação escrita do laboratório.